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ABSTRACT

We study two methods of micrograph processing in cryo-
electron microscopy: the defocus-gradient corrected back-
projection algorithm and the correction of micrographs for the
contrast transfer function based on the frequency-distance re-
lation. Analyzing integral images produced by the methods
we conclude that they are asymptotically equivalent within
the framework of stationary phase approximation.

Index Terms— Electron microscopy, CTF correction

1. INTRODUCTION

In transmission electron microscopy (TEM), 2D projection
images - called micrographs - of a 3D mass distribution (e.g.,
of a macromolecule) are generated in accordance with the
contrast transfer function (CTF) of the electron microscope
[1]. Correction for the CTF in the micrographs aims at esti-
mating enhanced data that can be treated as if they were line
integrals, so that algorithms from computerized tomography
(CT) become applicable. Specialized filters that correct for
distance-dependent distortions in 1D projections of 2D ob-
jects via the frequency-distance relation (FDR) and using a
stationary phase approximation have been known for years
[2]. This approach was adapted by Dubowy and Herman [3]
to the 3D case in which the 2D micrographs are gathered from
directions lying on a big circle around the object. In contrast
to the traditional filtered backprojection technique, in which
each projection is independently filtered and then backpro-
jected, this distance-dependent CTF correction works simul-
taneously on the set of all projections. The extension of the
2D case to the special 3D acquisition geometry in which pro-
jection directions constitute an equatorial circle was done by
using a natural 1D parameterization of the directions on that
big circle. Further generalization to arbitrarily-oriented 2D
micrographs encounters difficulties due to the complex nature
of image formation in TEM and the current lack of knowledge
as to how best organize the directions on the 3D unit sphere
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S2 in a way that is appropriate for distance-dependent CTF
correction.
The method DGCBP (defocus-gradient corrected back-

projection) proposed by Jensen and Kornberg [4] is an al-
ternative approach that operates on micrographs taken from
arbitrary directions. The method exploits features of the for-
ward model for TEM togetherwith the general structure of the
well-known weighted backprojection technique. However,
the authors of [4] did not elaborate quantitatively how their
method relates to other reconstruction/correction approaches,
and they provided only a heuristic (rather than mathematical)
justification as to why the method should work.
In this work we demonstrate that, for those cases

for which the FDR-based CTF correction method has been
mathematically derived, the heuristic DGCBP method is in
some sense equivalent to it. More precisely, we show that
the mathematical formulas that describe a 2D object recon-
structed by the two methods from its distance-dependently
distorted 1D projections in ALL directions are in fact the
same. (The proof is easily generalizable to 3D objects to be
reconstructed from 2D projections taken in ALL directions
on a big circle.) This gives a further validation of the DGCBP
approach for such special cases and raises the expectations
of its validity in the general case. Numerical test results are
presented.

2. FORWARDMODEL OF TEM

Let us assume that v(x1, x2, x3) is a square integrable func-
tion with an origin-centered ball as its finite support. For
the projection direction vector defined by spherical coordi-
nates (ϕ1, ϕ2), we can calculate vϕ1,ϕ2 , a rotational version
of the v. Then a single distorted 2D projection (micrograph)
gϕ1,ϕ2(x1, x2) ≡ g(ϕ1, ϕ2, x1, x2) is defined as

gϕ1,ϕ2(x1, x2) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

vϕ1,ϕ2(x′1, x
′

2, y)×

h(x1 − x′1, x2 − x′2, y)dx′1dx′2dy, (1)
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where y ≡ x3. Here, instead of rotating the acquisition sys-
tem acquiring projections from different directions, we have
chosen to rotate the function v itself. The image formation
model in TEM can be represented using the 2D Fourier trans-
forms of the micrograph gϕ1,ϕ2 , of the rotated object vϕ1,ϕ2

and of the kernel h as

ˆ̂
Gϕ1,ϕ2(k1, k2) =

∞∫

−∞

V ϕ1,ϕ2(k1, k2, y)H(k1, k2, y)dy, (2)

where the number of hats above the G aims at distinguishing
between the 1-, 2-, and 3D Fourier transforms. The Fourier
transform H of the convolving kernel h is called in TEM the
Contrast Transfer Function (CTF). It can be assumed to be
radially symmetric in the (k1, k2) plane and has the form

H(k, y) = HCTF (k, y)Espat(k, y)Etemp(k), (3)

HCTF (k, y) = (1− a) sin(D(k, y))− a cos(D(k, y)), (4)

D(k, y) = 2πλk2(−
Δf

2
+

λ2k2Cs

4
), (5)

Espat(k, y) = e−π2q2
0(Csλ3k3

−Δfλk)2 , (6)

Etemp(k) = e−( 1
2 πFsλk2)2 , (7)

where the parameters involved are:
- a is a fraction of the amplitude contrast,
- k ≡

√
k2
1 + k2

2 is a spatial frequency,
- λ is the electron wavelength,
- Cs is the lense spherical aberration coefficient,
-Δf is the value of the defocus,
- q0 is the size of the electron source,
- Fs is the lens focal spread coefficient.

Note: the defocusΔf = Δf(y) depends on the distance y.
A method is proposed in [3] with the following property:

given distant-dependently distorted micrographs taken from
directions occupying a big circle (this corresponds to the case
of a constant ϕ2 and varying ϕ1), the output of the method
will be corrected micrographs that are approximately 2D X-

ray transforms of the object. Denoting by
ˆ̂
Ĝ(n, ϕ2, k1, k2)

and by
ˆ̂
P̂ (n, ϕ2, k1, k2) the 3D Fourier transforms of the com-

bination of all such micrographs g(ϕ1, ϕ2, x1, x2) and of the
corresponding true X-ray transform p(ϕ1, ϕ2, x1, x2), respec-
tively, the stationary phase approximation implies [3] that

ˆ̂
Ĝ(n, ϕ2, k1, k2) ≈

ˆ̂
P̂ (n, ϕ2, k1, k2)H(k1, k2,−n/k1). (8)

Generalizations of (8) to different types of collections of pro-
jection directions (containing points on the whole of the 3D
sphere) are not known. In many practical situations, the pro-
jection directions are spread over the sphere arbitrarily. The
heuristic method of [4] is applicable even in such cases. What

is more, as we now proceed to demonstrate, in the special in-
stances when both approaches are applicable, the reconstruc-
tions produced by that method will be the same as those pro-
duced by the above-discussed CTF correction technique, at
least in the limiting case of noiseless micrographs being avail-
able in all the directions on a big circle.
Let us restate this a bit more mathematically. In ordinary

CT, there are the operatorsP (projection),B (backprojection),
and D (deblurring). In the mathematical limit (everything
is known without noise), we know that, for any volume v,
v = DBPv. Let Cv denote the distance-dependent CTF cor-
rupted projection data of v. The CTF correction method esti-
mates from such Cv projection data UCv such that (hopefully)
UCv = Pv. If so, then v can be recovered by v = DBUCv.
On the other hand, DGCBP estimates from the Cv projection
data VCv such that (hopefully) VCv = BPv. If so, then v
can be recovered by v = DVCv. What we show in our cur-
rent paper is that (again in the mathematical limit), for any
v, BUCv = VCv, in those cases where both methods are ap-
plicable. (From this it follows that the two reconstructions,
obtained by applying D to the two sides of the last equation,
will also be identical.)
In case of undistorted projection data in 2D CT, the tra-

ditional notion of an integral image [5] is an integral of ridge
functions

c(x, y) =

2π∫

0

pϕ(x cos ϕ + y sin ϕ)dϕ, (9)

where

pϕ(x) ≡ p(ϕ, x) =

∞∫
−∞

vϕ(x, y)dy (10)

is a true X-ray projection, and rotational version vϕ of v is

vϕ(x, y) = v(x cos ϕ− y sin ϕ, x sin ϕ + y cosϕ). (11)

Then, in our symbolic notation, the set of all pϕ is what is
referred to above as Pv, and the c in (9) is in fact BPv.

3. ANALYSIS OF INTEGRAL IMAGES

In what follows we use the simplified 2D formulation of the
TEM model. Generalization to the 3D case with equatorial
orbits is straightforward. The 2D analog of the forward model
(1) is

g(ϕ, x) ≡ gϕ(x) =

∞∫

−∞

∞∫

−∞

vϕ(x′, y)h(x− x′, y)dx′dy.

(12)
The set of all gϕ is what is referred to above as Cv. The 2D
version of model (2) is then

Ĝϕ(k) =

∞∫

−∞

V ϕ(k, y)H(k, y)dy. (13)
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3.1. Defocus-gradient corrected backprojection

Aiming at defocus elimination [4], defocus-gradient corrected
backprojection (DGCBP) uses a generalized version bϕ of
ridge functions, defined by

bϕ(x, y) = F−1[B̂ϕ(k, y)] =

∞∫

−∞

B̂ϕ(k, y)e2πikxdk, (14)

where explicit dependence upon the variable y arises due to
compensative filtering that depends on y and is given by

B̂ϕ(k, y) = Ĝϕ(k)/H(k, y) = Ĝϕ(k)H−1(k, y), (15)

assuming that the inverseH−1 exists and is well-defined. In-
tegration of the generalized ridge functions bϕ(x, y) provides
us with the generalized integral image

w(x, y) =

2π∫

0

bϕ(x cos ϕ + y sin ϕ,−x sinϕ + y cosϕ)dϕ.

(16)
This w is the VCv of Section 2. The expectation that w =
VCv is in fact BPv is based on the hope that distortions in the
slices above and below any particular slice would cancel out
due to the rotation of the projection direction.
We are going to explore how the generalized integral im-

age w(x, y) of the DGCBP method is related to the approx-
imation c∗(x, y) that is provided by CTF correction for the
integral image c(x, y). For that purpose, let the original im-
age be the delta function

v(x, y) = δ(x0 − x)δ(y0 − y), (17)

centered at a point (x0, y0) ∈ R2. We wish to compute its
generalized integral image. It can be shown that the micro-
graph of v is

gϕ(x) = h (x− x0 cosϕ− y0 sin ϕ,−x0 sin ϕ + y0 cosϕ) ,
(18)

and so the forward Fourier transform of gϕ(x) is

Ĝϕ(k) = H(k,−x0 sinϕ+y0 cosϕ)e−2πik(x0 cos ϕ+y0 sin ϕ).
(19)

Recalling that a generalized ridge function (14) is

bϕ(x, y) =

∞∫

−∞

Ĝϕ(k)H−1(k, y)e2πikxdk, (20)

and substituting (19) and (20) into (16) we obtain that the
generalized integral image for the delta function is

w(x, y) =

2π∫

0

∞∫
−∞

e2πik[(x−x0) cos ϕ+(y−y0) sin ϕ]
×

H(k,−x0 sin ϕ + y0 cosϕ)

H(k,−x sin ϕ + y cosϕ)
dkdϕ. (21)

3.2. CTF correction of micrographs

We can represent the true X-ray projection pϕ in the form:

p(ϕ, x) =

∞∑
n=−∞

∞∫
−∞

ˆ̂
P (n, k)e2πi(kx+nϕ)dk, (22)

where the term ˆ̂
P (n, k) is not available in practice. It is esti-

mated by a correction of ˆ̂
G(n, k), the 2D Fourier transform of

the corrupted projection data g(ϕ, x). The correction is based
on the FDR principle [2] (see also (26)), which implies

ˆ̂
G(n, k) ≈

ˆ̂
P (n, k)H(k,−n/k), (23)

which is known as the CTF correction equation. Then substi-
tuting (22) and (23) into (9) we obtain

c(x, y) ≈ c∗(x, y) ≡

2π∫

0

∞∑
n=−∞

∞∫
−∞

ˆ̂
G(n, k)

H(k,−n/k)
×

e2πi[k(x cos ϕ+y sin ϕ)+nϕ]dkdϕ. (24)

This c∗ is the BUCv in Section 2.
The last integral in (24) can be modified using the station-

ary phase approximation: the largest contribution from the
highly oscillating integrand originates from those parts of its
domain for which the phase k(x cos ϕ+y sinϕ)+nϕ changes
most slowly. These parts are segments within which a station-
ary phase occurs, i.e., which contain values of ϕ that satisfy

∂

∂ϕ
[k(x cos ϕ + y sin ϕ) + nϕ] = 0, (25)

or, in the form of the frequency-distance relation,

−x sinϕ + y cosϕ = −n/k. (26)

Assuming that 1/H(k,−n/k) is smooth enough, we can re-
placeH(k,−n/k) in (24) byH(k,−x sin ϕ + y cosϕ).

Now we are going to prove that if c∗(x, y) is defined by
(24) for the delta function v defined by (17), then c∗ equals
the associated w as defined by (21). For this v, we calcu-
late ˆ̂

G(n, k), by taking the Fourier transform of the function
defined in (19) with respect to its angular variable, and get

ˆ̂
G(n, k) =

2π∫

0

H(k,−x0 sin ψ + y0 cosψ)×

e−2πik(x0 cos ψ+y0 sin ψ)e−2πinψdψ. (27)

Substitution of (27) into (24) produces after a reversal of the
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order of integrations and the sum

c∗(x, y) =

2π∫

0

∞∫
−∞

H(k,−x0 sin ψ + y0 cosψ)×

e−2πik(x0 cos ψ+y0 sin ψ)
×⎡

⎣ ∞∑
n=−∞

2π∫

0

e2πi[k(x cos ϕ+y sin ϕ)+n(ϕ−ψ)]

H(k,−x sin ϕ + y cosϕ)
dϕ

⎤
⎦ dkdψ. (28)

It is not difficult to show that the expression in brackets in (28)
equals e2πik(x cos ψ+y sin ψ)

H(k,−x sin ψ+y cos ψ) and (28) thus reduces to the form
of (21). This proves that, for a delta function at an arbitrary
location, the c∗(x, y) obtained from a complete set of CTF-
corrected noiseless but CTF-corrupted micrographs is equiv-
alent (within the framework of stationary phase approxima-
tion) to the w(x, y) obtained by the DGCBP method (21). By
the validity of CTF correction, they are both equivalent to

c(x, y) ≈ 2/
√

(x− x0)2 + (y − y0)2 ≡ 2/r, (29)

which is the ideal (in case of noiseless 2D CT projection data)
radially symmetric integral image [5] with profile 2/r.

4. NUMERICAL EXPERIMENTS

We compare the integral image w(x, y) (Fig. 1(a)), produced
numerically by the DGCBP technique for (x0, y0) = (0, 0)
using formula (21), and the ideal integral image (29) with pro-
file 2/r (Fig. 1(b)). For the inverse of H we used

H+(k, y) = H(k, y)/[H(k, y)H(k, y) + αkm], (30)

where α = 0.000001 andm = 2. The parameters are:
- a = 0;
- λ = 0.033487 Å;
- Cs = 22, 000, 000 Å;
-Δf ∈ [1500, 2500] (in Å) is linear defocus;
- q0 = 0.25 · 10−3/λ;
- Fs = 141.35 Å.

We show also a 3D DGCBP reconstruction from 5, 000 mi-
crographs taken from random directions (Fig. 1(d)). These
were numerically generated for a test object of seven spheres
(Fig. 1(c)).

5. DISCUSSION

In this work we have shown that DGCBP and CTF correction,
when both applicable, are likely to produce similar integral
images. The behavior of the two methods was illustrated on
two simple examples. It appears to be close to that of CT.

(a) Plot of w(x, y)
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Fig. 1. (a) Plot of integral image of the delta function by the
2D DGCBP algorithm; (b) two profiles (DGCBP and CT) of
integral images of the delta function; (c) 3D view (left) and
plot of test object’s central slice (right); (d) Plot of central
slice of the 3D DGCBP reconstruction.
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